当前位置: > 在三角形ABC中,角A、B、C所对应的边为a,b,c,且a^2+c^2-b^2=1/2ac,b=2,则三角形ABC面积的最大值....
题目
在三角形ABC中,角A、B、C所对应的边为a,b,c,且a^2+c^2-b^2=1/2ac,b=2,则三角形ABC面积的最大值.

提问时间:2020-08-03

答案
a^2+c^2-b^2=1/2ac
cosb=(a^2+c^2-b^2)/2ac=1/4
sinb=根号15/4
s=1/2acsinb
a^2+c^2-b^2=1/2ac>=2ac-b^2
ac
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.