当前位置: > 设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点与抛物线C2:x^2=4√2y焦点重合,F1,F2分别是椭圆的左右焦点,离心率e=√3/3,过椭圆右焦点F2的直线l与椭圆C交于M...
题目
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点与抛物线C2:x^2=4√2y焦点重合,F1,F2分别是椭圆的左右焦点,离心率e=√3/3,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,是否存在直线l,使得OM·ON=-1,若存在,求出直线l的方程;若不存在,说明理由

提问时间:2020-08-03

答案
因为抛物线的焦点F(0,√2),所以b^2=2,又因为e=√3/3,所以a^2=3,所以椭圆C1:x^2/3+y^2/2=1,右焦点F2(1,0).设L:y=k(x-1),M(x1,y1),N(x2,y2),因为OM·ON=-1,所以x1*x2+y1*y2=-1.由y=k(x-1)和x^2/3+y^2/2=1联立得:...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.