题目
已知等差数列的首项为a1=1公差d>0第2,5,14分别为等比数列bn的2,3,4项
求an bn 的通项公式
设数列cn对n属于自然数均有c1/b1+c2/b2+...+cn/bn=a(n+1)成立求c1+c2+...+c2010
求an bn 的通项公式
设数列cn对n属于自然数均有c1/b1+c2/b2+...+cn/bn=a(n+1)成立求c1+c2+...+c2010
提问时间:2020-08-03
答案
b2=a2=(1+d)、b3=a5=(1+4d)、b4=a14=(1+13d);
由b3:b2=b4:b3得b3*b3=b2*b4,即(1+4d)*(1+4d)=(1+d)*(1+13d),解得d=2;
a(n)=2*n-1、b(n)=3^(n-1),其中“^”符号表示乘幂;
c(1)/b(1)+c(2)/b(2)+...+c(n)/b(n)=a(n+1)、c(1)/b(1)+c(2)/b(2)+...+c(n-1)/b(n-1)=a(n);
第一式减第二式,得c(n)/b(n)=a(n+1)-a(n)=2,即c(n)=2*b(n),(对n>1成立);
由c(1)/b(1)=a(2)得到c(1)=3=2*b(1)+1;
c(1)+c(2)+...+c(2010)即为1+2*[b(1)+b(2)+...+b(2010)],使用等比数列求和公式即可得到:3^2010.
由b3:b2=b4:b3得b3*b3=b2*b4,即(1+4d)*(1+4d)=(1+d)*(1+13d),解得d=2;
a(n)=2*n-1、b(n)=3^(n-1),其中“^”符号表示乘幂;
c(1)/b(1)+c(2)/b(2)+...+c(n)/b(n)=a(n+1)、c(1)/b(1)+c(2)/b(2)+...+c(n-1)/b(n-1)=a(n);
第一式减第二式,得c(n)/b(n)=a(n+1)-a(n)=2,即c(n)=2*b(n),(对n>1成立);
由c(1)/b(1)=a(2)得到c(1)=3=2*b(1)+1;
c(1)+c(2)+...+c(2010)即为1+2*[b(1)+b(2)+...+b(2010)],使用等比数列求和公式即可得到:3^2010.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.(初二)
- 2mbar是什么意思
- 3若欧姆表使用一段时间后,电池的电动势变小、内租变大,但此表依然可以调零,
- 4万圣节的“不给糖就捣乱”用英语怎么说
- 5已知点P(1,2)在f(x)=√(ax+b)的图象上,又在它的反函数图象上,求函数f(x)的解析式.
- 6在同一平面内,不重合的两条直线,它们的位置关系有平和()两种.垂直是()中的一种特殊形式,
- 7小张阿姨的服装店卖给一位顾客两套服装,结果一套赚了了20%,另一套赔了20%.两套衣服都卖了120元,这笔…
- 8有关迎接失败的作文的事例帮忙说一下!
- 9What size of shoes do you wear?I wear Size Six 还是size six?
- 10形容入迷失去控制是哪个词
热门考点