当前位置: > 已知圆C1:(x+3)^2+y^2=16,圆C2:(x-3)^2+y^2=1动圆P与两圆相外切,求动圆圆心P的轨迹方程...
题目
已知圆C1:(x+3)^2+y^2=16,圆C2:(x-3)^2+y^2=1动圆P与两圆相外切,求动圆圆心P的轨迹方程

提问时间:2020-08-03

答案
P(x,y),半径为r
则动圆P到C1,C2圆心的距离分别为其与圆C1,C2的半径和,即有:
(r+4)^2=(x+3)^2+y^2
(r+1)^2=(x-3)^2+y^2
两式相减得:6r+15=12x,即r=2x-5/2
代入其中一式即得P的轨迹方程:(2x-5/2+1)^2=(x-3)^2+y^2
化简得:3x^2-27/4-y^2=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.