当前位置: > 函数f(x)=x2+ax+3,当x属于R时,f(x)>=a恒成立,实数a的取值范围...
题目
函数f(x)=x2+ax+3,当x属于R时,f(x)>=a恒成立,实数a的取值范围

提问时间:2020-08-03

答案
∵当x∈R时,f(x)= x²+ax+3 ≥a 恒成立
即 x²+ax+3-a ≥0
△=b²-4ac= a²- 4×(3-a)=a²+4a-12
当a²+4a-12>0时,x²+ax+3-a ≥0不是恒成立,故不做讨论.
当a²+4a-12≤0时,x²+ax+3-a ≥0 恒成立;解 a²+4a-12≤0 得:-6 ≤ a ≤ 2 .
因此,可得a的取值范围是:-6 ≤ a ≤ 2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.