当前位置: > 已知f(n)=(2n+7)×3^n +9 ,是否存在自然数m,使得对任意n∈N*,都能使m整除f(n)?...
题目
已知f(n)=(2n+7)×3^n +9 ,是否存在自然数m,使得对任意n∈N*,都能使m整除f(n)?
已知f(n)=(2n+7)3^n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m值是多少?并证明你的结论.
在使用数学归纳法证明时,最后一步我有点疑问:当n=k+1时,可化出来是:
f(k+1)=3f(k)+18×[ 3^(k-1) -1]
为什么“3f(k)能被36整除,18×[ 3^(k-1) -1] 能被36整除,就能得出f(k+1) 就能被36整除?”它俩不是想家的关系吗?

提问时间:2020-08-03

答案
当n=1时,f(n)=f(1)= 9*3+9 = 36
当n>1时,f(k+1) - f(k) = [3(2k+9)-(2k+7)]* 3^k
= 4(k+5)*3^k (可以被36整除)
由于f(1) 和任意相邻项之差都可以被36整除,因此,最大的m是36
因为3^(k-1)肯定是奇数,3^(k-1) -1则一定是偶数,18×[ 3^(k-1) -1] 当然是36的倍数了.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.