题目
证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^2+n-1
提问时间:2020-08-03
答案
证明:
设:f(n)=(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)-n^2-n+1
f(3)=(1+2+3)(1+ 1/2 + 1/3)-9-3+1=6*11/6-9-3+1=0
f(n+1)-f(n)=(1+2+3+…+n+n+1)[1+ 1/2 + 1/3 +…+ 1/n+1/(n+1)]-(n+1)^2-n
-(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)+n^2+n-1
=1+(n+1)(1+ 1/2 + 1/3 +…+ 1/n)+(1+2+3+…+n)(n+1)-2n-2
>1+n+1+(n+1)^2-2n-2>0
f(n)单调递增.
f(n)>f(3)≥0
设:f(n)=(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)-n^2-n+1
f(3)=(1+2+3)(1+ 1/2 + 1/3)-9-3+1=6*11/6-9-3+1=0
f(n+1)-f(n)=(1+2+3+…+n+n+1)[1+ 1/2 + 1/3 +…+ 1/n+1/(n+1)]-(n+1)^2-n
-(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)+n^2+n-1
=1+(n+1)(1+ 1/2 + 1/3 +…+ 1/n)+(1+2+3+…+n)(n+1)-2n-2
>1+n+1+(n+1)^2-2n-2>0
f(n)单调递增.
f(n)>f(3)≥0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一道初二英语题,急啊
- 23分之1.7分之1.9分之1...第n个数是
- 3the little girl is as______as her mother
- 4已知|a|=|b|试判断AB的关系
- 5可乐摇了以后是物理变化还是化学变化
- 6英语翻译:电影城有最好的服务吗?Does Movie City have ____ ______ service?
- 7已知向量a和b的夹角为60°,|a|=3,|b|=4,则(2a-b)•a等于 _ .
- 8Can you look after your selves well (改为同义句)
- 9爱的语言 丁立梅阅读答案
- 10若a=-2010分之2011,b=-2009分之2010,c=-2008分之2009,试比较a,b,c之间的大小
热门考点