题目
除法运算性质
除法运算性质
除法运算性质
提问时间:2020-08-03
答案
除法的运算性质主要有以下几条:
(1)在无括号的乘除混合或连除的算式中,改变运算顺序,结果不变.
例如:36×7÷4=36÷4×7
36÷9÷2=36÷2÷9
一般地,a×b÷c=a÷c×b(a能被c整除)
a÷b÷c=a÷c÷b(a能被bc整除)
这条性质也适用于含有三个以上的数的算式.例如:37×45×11÷15=37×45÷15×11.
应用这条性质进行计算时,要注意整除的条件,就是使变化后的算式中的除法能够整除.例如:40×9÷18×7,可以变成40×9×7÷18,而不能变成40÷18×9×7,因为40不能被18整除.
(2)一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数.这条性质可以简称为“数乘以商的性质”.
例如:2×(75÷15)=2×75÷15
或 90×(27÷9)=90÷9×27
一般地,a×(b÷c)=a×b÷c
a×(b÷c)=a÷c×b(b和a分别能被c整除).
(3)一个数除以两个数的积,等于这个数依次除以积的两个因数.这条性质也可以简称为“数除以积的性质”.
例如:105÷(7×3)=105÷7÷3
330÷(5×11)=330÷5÷11
一般地,a÷(b×c)=a÷b÷c
这条性质也可以推广为:一个数除以几个数的积,等于这个数依次除以积的每个因数.
例如:840÷(7×3×4)=840÷7÷3÷4
一般地,a÷(b×c×d)=a÷b÷c÷d
(4)一个数除以两个数的商,等于这个数先除以商中的被除数,再乘以商中的除数.或者这个数先乘以商中的除数,再除以商中的被除数.这条性质也可以简称为“数除以商的性质”.
例如:63÷(9÷3)=63÷9×3
或 63÷(9÷3)=63×3÷9
一般地,a÷(b÷c)=a÷b×c(a能被b整除)
a÷(b÷c)=a×c÷b(a能被b整除)
(5)两个数的和除以一个数,等于和里的两个加数分别除以这个数(在都能被整除的条件下),再把所得的商加起来.这条性质可以推广到若干个数的和除以一个数的情况.这条性质也可以简称为“和除以数的性质”.
例如:(77+66)÷11=77÷11+66÷11
一般地,(a+b)÷c=a÷c+b÷c(a和b分别能被c整除)
又如:(72+54+36+18)÷9
=72÷9+54÷9+36÷9+18÷9
一般地,(al+a2+……+an)÷b
=a1÷b+a2÷b+……+an÷b(a1、a2、……、an分别能被b整除)
(6)两个数的差除以一个数,等于被减数和减数分别除以这个数(在都能被整除的条件下),然后把所得的商相减.这条性质也可以简称为“差除以数的性质”.
例如:(72-40)÷8=72÷8—40÷8
一般地,(a—b)÷c=a÷c—b÷c(a和b分别能被c整除)
(1)在无括号的乘除混合或连除的算式中,改变运算顺序,结果不变.
例如:36×7÷4=36÷4×7
36÷9÷2=36÷2÷9
一般地,a×b÷c=a÷c×b(a能被c整除)
a÷b÷c=a÷c÷b(a能被bc整除)
这条性质也适用于含有三个以上的数的算式.例如:37×45×11÷15=37×45÷15×11.
应用这条性质进行计算时,要注意整除的条件,就是使变化后的算式中的除法能够整除.例如:40×9÷18×7,可以变成40×9×7÷18,而不能变成40÷18×9×7,因为40不能被18整除.
(2)一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数.这条性质可以简称为“数乘以商的性质”.
例如:2×(75÷15)=2×75÷15
或 90×(27÷9)=90÷9×27
一般地,a×(b÷c)=a×b÷c
a×(b÷c)=a÷c×b(b和a分别能被c整除).
(3)一个数除以两个数的积,等于这个数依次除以积的两个因数.这条性质也可以简称为“数除以积的性质”.
例如:105÷(7×3)=105÷7÷3
330÷(5×11)=330÷5÷11
一般地,a÷(b×c)=a÷b÷c
这条性质也可以推广为:一个数除以几个数的积,等于这个数依次除以积的每个因数.
例如:840÷(7×3×4)=840÷7÷3÷4
一般地,a÷(b×c×d)=a÷b÷c÷d
(4)一个数除以两个数的商,等于这个数先除以商中的被除数,再乘以商中的除数.或者这个数先乘以商中的除数,再除以商中的被除数.这条性质也可以简称为“数除以商的性质”.
例如:63÷(9÷3)=63÷9×3
或 63÷(9÷3)=63×3÷9
一般地,a÷(b÷c)=a÷b×c(a能被b整除)
a÷(b÷c)=a×c÷b(a能被b整除)
(5)两个数的和除以一个数,等于和里的两个加数分别除以这个数(在都能被整除的条件下),再把所得的商加起来.这条性质可以推广到若干个数的和除以一个数的情况.这条性质也可以简称为“和除以数的性质”.
例如:(77+66)÷11=77÷11+66÷11
一般地,(a+b)÷c=a÷c+b÷c(a和b分别能被c整除)
又如:(72+54+36+18)÷9
=72÷9+54÷9+36÷9+18÷9
一般地,(al+a2+……+an)÷b
=a1÷b+a2÷b+……+an÷b(a1、a2、……、an分别能被b整除)
(6)两个数的差除以一个数,等于被减数和减数分别除以这个数(在都能被整除的条件下),然后把所得的商相减.这条性质也可以简称为“差除以数的性质”.
例如:(72-40)÷8=72÷8—40÷8
一般地,(a—b)÷c=a÷c—b÷c(a和b分别能被c整除)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1李明星期天进城买学习用品,所带的钱如果全部买练习本,可以买10本;如果全部买铅笔,可以买15枝.李明先买了4本练习本,剩下的钱还可以买_枝铅笔.
- 2已知-1<a+b<1,1<a-2b<3.求a+3b的取值范围
- 3请将文中引用唐朝张鷟的语句"初月出云,长虹饮涧"的意境,用美妙的语句描述出来
- 4气体的密度是固定不变的吗?有哪些因素影响气体的密度和体积
- 5太阳系行星中在地球上看起来哪个最亮?
- 6k为何值时,-3x²y²k次方与4x²y6次方是同类项,并求-2k+k²-1的值
- 7简单几何问题
- 8.既然商品的价值量与劳动生产率成反比,商品生产者为什么还要提高劳动生产率?
- 9街道上有一排路灯,共41根,每两根距离原来是45米,现在要改成30米,可以有几根路灯不需要移动
- 10硫酸氢钠与氢氧化钡反应的方程式
热门考点