当前位置: > 若x,y为任意实数 求x^+4xy+5y^+4x+2y+18的最小值...
题目
若x,y为任意实数 求x^+4xy+5y^+4x+2y+18的最小值

提问时间:2020-08-03

答案
x^+4xy+5y^+4x+2y+18
=[(x+2y)^2+4(x+2y)+4]+y^2-8y+2y+18
=[(x+2y)^2+4(x+2y)+4]+(y-3)^2+5
=(x+2y+2)^2+(y-3)^2+5
因为:(x+2y+2)^2>=0,(y-3)^2>=0
所以:(x+2y+2)^2+(y-3)^2+5≥5
当x+2y+2=0,y-3=0时等号成立
y=3,x=-8时
最小值5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.