当前位置: > 在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an}通项公式...
题目
在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an}通项公式

提问时间:2020-08-02

答案
a(n+1)=2an/(an+1)
∴1/a(n+1)=(an+1)/2an=1/2an+1/2
∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-1=-1/2
∴{1/an-1}是首项为-1/2,公比为1/2的等比数列
1/an-1=-1/2×(1/2)^(n-1)=-(1/2)^n
an=2^n/(2^n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.