题目
试证当n为正整数时,f(n)=32n+2-8n-9能被64整除.
提问时间:2020-08-02
答案
证法一:(1)当n=1时,f(1)=64,命题显然成立.
(2)假设当n=k(k∈N*,k≥1)时,f(k)=32k+2-8k-9能被64整除.
当n=k+1时,由于32(k+1)+2-8(k+1)-9
=9(32k+2-8k-9)+9•8k+9•9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),
即f(k+1)=9f(k)+64(k+1),∴n=k+1时命题也成立.
根据(1)、(2)可知,对于任意n∈N*,命题都成立.
证法二:32n+2-8n-9=9(8+1)n-8n-9
=9(8n+
(2)假设当n=k(k∈N*,k≥1)时,f(k)=32k+2-8k-9能被64整除.
当n=k+1时,由于32(k+1)+2-8(k+1)-9
=9(32k+2-8k-9)+9•8k+9•9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),
即f(k+1)=9f(k)+64(k+1),∴n=k+1时命题也成立.
根据(1)、(2)可知,对于任意n∈N*,命题都成立.
证法二:32n+2-8n-9=9(8+1)n-8n-9
=9(8n+
C | 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译
最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|