当前位置: > 求函数y=2根号(-x²+2x) 的定义域,值域及单调增区间....
题目
求函数y=2根号(-x²+2x) 的定义域,值域及单调增区间.

提问时间:2020-08-02

答案
要使函数有意义必须:
-x²+2x≥0
x²-2x≤0==>
0≤x≤2
所以原函数的定义域为:
【0,2】
y=√-(x-1)²+1≤1
所以原函数的值域为
【0,1】
原函数可拆成
y=√t
t=-x²+2x
t≥0 ==>
0≤x≤2
函数t(x)的对称轴为x=1,在【0,1】上单调增,
函数y(t)也是增函数,所以原函数在【0,1】上单调增,
因此原函数的单调区间为:
【0,1】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.