题目
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数.(1)求a的值(2)证明f(x)在(0,+∞)上是增函数(3)解方程f(x)=2
提问时间:2020-08-02
答案
a>0,f(x)=e^x/a+a/e^x是R上的偶函数,
∴f(x)=f(-x),即e^x/a+a/e^x=e^(-x)/a+a/e^(-x),
∴(e^x-1/e^x)(a-1/a)=0,
∴a-1/a=0,a^2=1,a>0,
∴a=1.
(2)f(x)=e^x+e^(-x),x>0,
f'(x)=e^x-e^(-x)>0,
∴f(x)是增函数.
(3)f(x)=2,
(e^x)^2+1=2e^x,
(e^x-1)^2=0,
e^x=1,x=0.
∴f(x)=f(-x),即e^x/a+a/e^x=e^(-x)/a+a/e^(-x),
∴(e^x-1/e^x)(a-1/a)=0,
∴a-1/a=0,a^2=1,a>0,
∴a=1.
(2)f(x)=e^x+e^(-x),x>0,
f'(x)=e^x-e^(-x)>0,
∴f(x)是增函数.
(3)f(x)=2,
(e^x)^2+1=2e^x,
(e^x-1)^2=0,
e^x=1,x=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点