当前位置: > 证明 f(x)=xsinx 为非周期函数...
题目
证明 f(x)=xsinx 为非周期函数

提问时间:2020-08-02

答案
思路:反证法
假设周期T.
f(x+T)=(x+T)sin(x+T)
=xsin(x+T)+Tsin(x+T)
=xsinxcosT+xcosxsinT+TsinxcosT+TcosxsinT.
是周期函数,所以要=f(x)=xsinx
与上式对比,可以得出
cosT=1.(此时,sinT=0)
进一步化简得
f(x+T)=xsinx+Tsinx
于是可得T=0.
(整个过程要记住x是任意值的)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.