当前位置: > 求证 2^(6n-3)+3^(2n-1)能被11整除...
题目
求证 2^(6n-3)+3^(2n-1)能被11整除

提问时间:2020-08-02

答案
1)n=1时,2^(6-3)+3^(2-1)=11能被11整除,所以n=1时结论成立.2)设n=k时k属于N)2^(6 k-3)+3^(2k-1)能被11整除.则n=k+1时2^(6k+3)+3^(2k+1)=64*2^(6k-3)+9*3^(2k-1)=64*2^(6k-3)+64*3^(2k-1)-55*3^(2k-1)=64...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.