题目
已知数列An是各项均为正数的等差数列,lga1,lga2,lga4成等差数列,又Bn=1/A(2^n),n=1,2,3,.
(I)证明Bn为等比数列;
(II)如果数列Bn前3项的和等于7/24,求数列An的首项a1和公差d.
(I)证明Bn为等比数列;
(II)如果数列Bn前3项的和等于7/24,求数列An的首项a1和公差d.
提问时间:2020-08-02
答案
因为lga1,lga2,lga4成等差数列
lga1+lga4=2lga2,lga1*a4=lg(a2)^2
所以a1*a4=(a2)^2
a1(a1+3d)=(a1+d)^2
得a1=d
an=nd
Bn=1/d2^n B(n-1)=1/d2^(n-1) B(n+1)=1/d2^(n+1)
B(n-1) B(n+1)=1/d2^(n-1)*=1/d2^(n+1)=(1/d2^n )^2=Bn^2
Bn为等比数列
Sn=1/d(1/2+1/4+1/8)=7/8d=7/24 所以d=3
所以a1=3
lga1+lga4=2lga2,lga1*a4=lg(a2)^2
所以a1*a4=(a2)^2
a1(a1+3d)=(a1+d)^2
得a1=d
an=nd
Bn=1/d2^n B(n-1)=1/d2^(n-1) B(n+1)=1/d2^(n+1)
B(n-1) B(n+1)=1/d2^(n-1)*=1/d2^(n+1)=(1/d2^n )^2=Bn^2
Bn为等比数列
Sn=1/d(1/2+1/4+1/8)=7/8d=7/24 所以d=3
所以a1=3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点