题目
已知实数a.b.c满足a^+b^=1,b^+c^=2,c^+a^=2,则ab+bc+ca的最小值为?
提问时间:2020-08-02
答案
∵a²+b²=1 ①
b²+c²=2 ②
c²+a²=2 ③
有②、③得:b²+c²=c²+a²
∴b²=a²
把b²=a²代入①得;a²=b²=0.5
把a²=b²=0.5代入②得;c²=1.5
ab+bc+ca=[﹙a+b+c﹚²-﹙a²+b²+c²﹚]/2
=1/2[(a+b+c)²-﹙5/2﹚]
当﹙a+b+c﹚最小时;
1/2(a+b+c)²-﹙5/2﹚才是最小的
∴有两种情况
一种是 a=b>0 c<0
另一种是 c>0 a=b<0
① :a=b=√2/2 c=﹣﹙√6/2﹚
∴a+b+c=﹙2√2-√6﹚/2
∴1/2[(a+b+c)²-﹙5/2﹚]=﹙1-2√3﹚/2
②a=b=﹣﹙√2/2﹚ c=√6/2
∴1/2(a+b+c)²-﹙5/2﹚=﹙1-2√3﹚/2
∵﹙2-2√3﹚/2=﹙1-2√3﹚/2
综上所述:
∴﹙ab+bc+ca﹚min=﹙1-2√3﹚/2=0.5-√3
b²+c²=2 ②
c²+a²=2 ③
有②、③得:b²+c²=c²+a²
∴b²=a²
把b²=a²代入①得;a²=b²=0.5
把a²=b²=0.5代入②得;c²=1.5
ab+bc+ca=[﹙a+b+c﹚²-﹙a²+b²+c²﹚]/2
=1/2[(a+b+c)²-﹙5/2﹚]
当﹙a+b+c﹚最小时;
1/2(a+b+c)²-﹙5/2﹚才是最小的
∴有两种情况
一种是 a=b>0 c<0
另一种是 c>0 a=b<0
① :a=b=√2/2 c=﹣﹙√6/2﹚
∴a+b+c=﹙2√2-√6﹚/2
∴1/2[(a+b+c)²-﹙5/2﹚]=﹙1-2√3﹚/2
②a=b=﹣﹙√2/2﹚ c=√6/2
∴1/2(a+b+c)²-﹙5/2﹚=﹙1-2√3﹚/2
∵﹙2-2√3﹚/2=﹙1-2√3﹚/2
综上所述:
∴﹙ab+bc+ca﹚min=﹙1-2√3﹚/2=0.5-√3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点