当前位置: > 设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列的通项公式为_....
题目
设{an}是首项为1的正数项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),经归纳猜想可得这个数列的通项公式为______.

提问时间:2020-08-02

答案
∵(n+1)an+12-nan2+an+1an=0,
∴(n+1)an+1=nan或an+1+an=0,
∵{an}是首项为1的正数项数列,
∴(n+1)an+1=nan
∴an+1=
n
n+1
an
an+1
an
=
n
n+1

a2
a1
×
a3
a2
×…×
an
an−1
=
an
a1
=an=
1
2
×
2
3
×…×
n−1
n
=
1
n
(n∈N*
故这个数列的通项公式为an=
1
n
(n∈N*
故答案为:an=
1
n
(n∈N*
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.