题目
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为( )
A.
+
=1
B.
+
=1
C.
+
=1
D.
+
=1
| ||
2 |
A.
x2 |
4 |
y2 |
9 |
B.
x2 |
9 |
y2 |
4 |
C.
x2 |
36 |
y2 |
9 |
D.
x2 |
9 |
y2 |
36 |
提问时间:2020-08-02
答案
设椭圆G的方程为
+
=1(a>b>0),
∵椭圆上一点到其两个焦点的距离之和为12,
∴根据椭圆的定义得2a=12,可得a=6.
又∵椭圆的离心率为
,∴e=
=
,
即
=
,解之得b2=9,
由此可得椭圆G的方程为
+
=1.
故选:C
x2 |
a2 |
y2 |
b2 |
∵椭圆上一点到其两个焦点的距离之和为12,
∴根据椭圆的定义得2a=12,可得a=6.
又∵椭圆的离心率为
| ||
2 |
| ||
a |
| ||
2 |
即
| ||
6 |
| ||
2 |
由此可得椭圆G的方程为
x2 |
36 |
y2 |
9 |
故选:C
设椭圆G的方程为
+
=1(a>b>0),根据椭圆的定义得2a=12,算出a=6.再由离心率的公式建立关于a、b的等式,化简为关于b的方程解出b2=9,即可得出椭圆G的方程.
x2 |
a2 |
y2 |
b2 |
椭圆的标准方程.
本题给出椭圆G满足的条件,求椭圆G的标准方程.着重考查了椭圆的定义与标准方程、简单几何性质等知识,属于基础题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点