题目
椭圆mx2+ny2=1与直线x+y=1交于A、B两点,若AB=2√2,AB的中点C与椭圆中心连线的斜率为√2/2,求椭圆的方程
如题
如题
提问时间:2020-08-02
答案
设A点坐标(x1,y1),B点坐标(x2,y2)
将x+y=1代入mx²+ny²=1,得(m+n)x²-2nx+n-1=0,(易知m,n>0)
根据韦达定理有
x1+x2=2n/(m+n),x1x2=(n-1)/(m+n)
故y1+y2=2-(x1+x2)=2m/(m+n)
AB=√[(x1-x2)²+(y1-y2)²]=√[(x1-x2)²+(1-x1-1+x2)²]
=√[2(x1-x2)²]=√{2[(x1+x2)²-4x1x2]}
=√{2[4n²/(m+n)²-4(n-1)/(m+n)]}
=√[8(m-mn+n)/(m+n)²]=2√2
变形得m-mn+n=(m+n)²
C点坐标为((x1+x2)/2,(y1+y2)/2)
故[(y1+y2)/2]/[(x1+x2)/2]=(y1+y2)/(x1+x2)=m/n=√2/2
即m=(√2/2)n,代入m-mn+n=(m+n)²得
(√2/2)n-(√2/2)n²+n=[(√2/2)n+n]²
(√2+2)(√2-1)=3n
n=√2/3
m=1/3
故椭圆方程为(1/3)x²+(√2/3)y²=1
将x+y=1代入mx²+ny²=1,得(m+n)x²-2nx+n-1=0,(易知m,n>0)
根据韦达定理有
x1+x2=2n/(m+n),x1x2=(n-1)/(m+n)
故y1+y2=2-(x1+x2)=2m/(m+n)
AB=√[(x1-x2)²+(y1-y2)²]=√[(x1-x2)²+(1-x1-1+x2)²]
=√[2(x1-x2)²]=√{2[(x1+x2)²-4x1x2]}
=√{2[4n²/(m+n)²-4(n-1)/(m+n)]}
=√[8(m-mn+n)/(m+n)²]=2√2
变形得m-mn+n=(m+n)²
C点坐标为((x1+x2)/2,(y1+y2)/2)
故[(y1+y2)/2]/[(x1+x2)/2]=(y1+y2)/(x1+x2)=m/n=√2/2
即m=(√2/2)n,代入m-mn+n=(m+n)²得
(√2/2)n-(√2/2)n²+n=[(√2/2)n+n]²
(√2+2)(√2-1)=3n
n=√2/3
m=1/3
故椭圆方程为(1/3)x²+(√2/3)y²=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知a-2的绝对值+b-4的绝对值+c-1的绝对值=0 计算;1.2a+4b+c的值?
- 2That day he told his father what/that(用哪个) he had been waiting to hear.
- 3用ABB型的词造句,在线等
- 4张奶奶家靠墙一面墙用篱笆围一块正方形菜地,篱笆长24米,这块菜地的面积是多少平方米?
- 5为什么导体切割磁感线能产生感应电流?原理是什么?
- 6我英语基础不错,今天初二了,想读一些英语杂志呀,什么的,请给我推荐一些杂志,每月发行的,最好有趣...
- 7帮忙看下求助!数学题啊!在线等!就告诉我吧谢谢各位9Y
- 8介绍富春江"自富阳至桐庐'的景色
- 9求下列函数值域①y=√x+1 ②y=2x+1/x-3 ③ y=x²-1/x²+1 ④ y=√(5+4x-x² )⑤
- 10使一元二次方程x+7x+c=0有实数根的最大整数c是拜托各位大神