当前位置: > 已知x>0,y>0,z>0,求证:根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)>3/2(x+y+z)...
题目
已知x>0,y>0,z>0,求证:根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)>3/2(x+y+z)

提问时间:2020-08-02

答案
把不等式右边的式子化成3/4(x+y)+3/4(x+z)+3/4(y+z) 左边还是根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)接下来分别证明 根号(x^2+xy+y^2)>3/4(x+y)根号(x^2+xz+z^2)>3/4(x+z)根号(y^2+yz+z^2) >...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.