当前位置: > 设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度....
题目
设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度.

提问时间:2020-08-01

答案
Z的分布叫做瑞利(Rayleigh)分布,具体求法:
f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]
当z=0时,有:
F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2+y^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.