当前位置: > 菱形ABCD顶点A,C在椭圆x^2+3y^2=4上,对角线BD所在直线斜率为1,求...
题目
菱形ABCD顶点A,C在椭圆x^2+3y^2=4上,对角线BD所在直线斜率为1,求
1.当BD过(0,1)时,求AC方程
2.当角ABC=60°时,求菱形ABCD面积最大值

提问时间:2020-08-01

答案
解:(1)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x^2+3y^2=4和y=-x+n得4x^2-6nx+3n^2-4=0因为A,C在椭圆上,所以△=-12n^2+64>0,解得-4√3/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.