当前位置: > fx是定义在R上的奇函数,且当x属于[0,+∞)时fx=x(1+三次根号x)求fx在R上的解析式...
题目
fx是定义在R上的奇函数,且当x属于[0,+∞)时fx=x(1+三次根号x)求fx在R上的解析式
已知fx=(ax2+1)/(bx+c) (a,b,c属于Z)是奇函数且f1=2,f2

提问时间:2020-08-01

答案
【1】当x0
则f(x)=-f(-x)=-(-x)[1+三次根号(-x)]=x(1-三次根号x)
综上,当x∈[0,+∞)时,f(x)=x(1+三次根号x)
当x∈[-∞,0)时,f(x)=x(1-三次根号x)
【2】由奇函数性质f(x)=-f(-x)
(ax^2+1)/(bx+c)=-(ax^2+1)/(-bx+c)
即bx+c=bx-c
则c=0
有f(1)=2即(a+1)/b=2
则a=2b-1
又f(2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.