题目
设函数F(X)=x^3-3ax+b(a不等于0)
1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切(2)当a<0时,求函数f(x)的单调区间(3)a>0时,求函数f(x)的单调区间与极值点
1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切(2)当a<0时,求函数f(x)的单调区间(3)a>0时,求函数f(x)的单调区间与极值点
提问时间:2020-08-01
答案
1)f'(x)=3x^2-3a
在点(2,f(2))处与直线y=8相切, 则有f'(2)=0=12-3a, 得:a=4
且f(2)=8=8-3*4*2+b, 得:b=24
即f(x)=x^3-12x+24
2)a<0时,f'(x)=3(x^2-a)>0, 因此f(x)在R上都单调增
3)f'(x)=3(x^2-a),
a>0时,极值点为x=√a,-√a
单调增区间为:(-∞,-√a), (√a,+∞)
单调减区间为:(-√a, √a)
极大值f(-√a)=2a√a+b
极小值f(√a)=-2a√a+b
在点(2,f(2))处与直线y=8相切, 则有f'(2)=0=12-3a, 得:a=4
且f(2)=8=8-3*4*2+b, 得:b=24
即f(x)=x^3-12x+24
2)a<0时,f'(x)=3(x^2-a)>0, 因此f(x)在R上都单调增
3)f'(x)=3(x^2-a),
a>0时,极值点为x=√a,-√a
单调增区间为:(-∞,-√a), (√a,+∞)
单调减区间为:(-√a, √a)
极大值f(-√a)=2a√a+b
极小值f(√a)=-2a√a+b
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1当我终于爬下悬崖后,我啜泣了,而后产生了巨大的成就感,请你以第一人称的口吻,写下此时我心理变化的过程
- 2设3阶可逆矩阵A的特征值分别为λ1,λ2,λ3,对应的特征向量为ξ1,ξ2,ξ3,
- 3一个数的个位是一位数最大的合数,百分位上是最小的质数,其余都是0,这个小数是( ),读作( )
- 4无色晶体和白色晶体有什么区别?为什么盐水可以导电?
- 5比色测温中波长如何选择
- 6【英语】耐心好心的People,come in
- 7影响摩擦力的因素有哪些
- 8如图,在△ABC中,DE∥BC,∠ADE=∠AED,G为BC的中点,试判断△DGE的形状,并说明你的理由.(可连接辅助线)
- 9若x的平方-2kx+9是一个完全平方式,求K的值
- 10张叔叔要做一个无盖的长方体玻璃鱼缸,鱼缸长是1米,宽是40厘米,高是50厘米,如果选用每平方米28元的玻璃,做这个鱼缸一共需要多少钱