题目
设总体X~U(0,θ),X1,X2,···,Xn是取自该总体的一个样本.X0是样本平均数.
(1) 证明θ1=2X0,θ2=(n+1)/n.X(n)是θ的无偏估计(其中X(n)=max﹛X1,X2,···,Xn﹜);
(2) θ1和θ2哪一个更有效(n≥2)?
(1) 证明θ1=2X0,θ2=(n+1)/n.X(n)是θ的无偏估计(其中X(n)=max﹛X1,X2,···,Xn﹜);
(2) θ1和θ2哪一个更有效(n≥2)?
提问时间:2020-08-01
答案
对任意i,显然都有E(Xi)= θ/2 ,故E(θ1)=2E(X0)=2/n ∑E(Xi)=2*θ/2=θ
令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t)
其中p()和F()分别表示均匀分布的密度函数与分布函数,p(t)=1/θ,F(t)=t/θ
所以g(t)=nt^(n-1)/ θ^n
因此E(θ2)=(n+1)/nE(x(n))= (n+1)/n*∫(nt^n/θ^n)dt=(n+1)/n*(θ*n/(n+1))= θ
故θ1与θ2都是无偏估计
接下来再比较θ1与θ2的方差,方差小的效更好
VAR(θ1)=4VAR(X0)=4/n^2 ∑VAR(Xi)=4/n*VAR(Xi)
VAR(Xi)=E(Xi^2)-(E(Xi))^2=θ^2/3-θ^2/4=θ^2/12
故VAR(θ1)= θ^2/(3n)
VAR(θ2)=(n+1)^2/n^2VAR(x(n)) 命x(n)=t VAR(t)=E(t^2)-(Et)^2=n/(n+2)*θ^2-(θ*n/(n+1))^2=n/((n+1)^2*(n+2))θ^2
故VAR(θ2)=1/(n*(n+2)) θ^2
而VAR(θ1)/VAR(θ2)=(n+2)/3,当n>=2时,VAR(θ1)/VAR(θ2)>1,即VAR(θ1)>VAR(θ2),因此θ2更加有效
令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t)
其中p()和F()分别表示均匀分布的密度函数与分布函数,p(t)=1/θ,F(t)=t/θ
所以g(t)=nt^(n-1)/ θ^n
因此E(θ2)=(n+1)/nE(x(n))= (n+1)/n*∫(nt^n/θ^n)dt=(n+1)/n*(θ*n/(n+1))= θ
故θ1与θ2都是无偏估计
接下来再比较θ1与θ2的方差,方差小的效更好
VAR(θ1)=4VAR(X0)=4/n^2 ∑VAR(Xi)=4/n*VAR(Xi)
VAR(Xi)=E(Xi^2)-(E(Xi))^2=θ^2/3-θ^2/4=θ^2/12
故VAR(θ1)= θ^2/(3n)
VAR(θ2)=(n+1)^2/n^2VAR(x(n)) 命x(n)=t VAR(t)=E(t^2)-(Et)^2=n/(n+2)*θ^2-(θ*n/(n+1))^2=n/((n+1)^2*(n+2))θ^2
故VAR(θ2)=1/(n*(n+2)) θ^2
而VAR(θ1)/VAR(θ2)=(n+2)/3,当n>=2时,VAR(θ1)/VAR(θ2)>1,即VAR(θ1)>VAR(θ2),因此θ2更加有效
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1把105升水注入两个容器,可注满第一个容器与第二个容器的1/2,或可注满第二个容器及第一个容器的1/3.求每个容器的容量.
- 2已知函数f(x)=x2+bx+c,且f(3)=f(0),f(1)=0 设函数F(x)=log2/3f(x),写出函数F(x)的单调区间
- 33X方-6-X方+2X=0
- 4计算铝棒和铝管的重量
- 5小学六年级四十六分之五乘四十七整么用简便计算
- 626个大小写英文字母,怎么写?
- 7300克苹果等于几个苹果?1个还是两个?
- 8有木有make a dream啊,是做了一个梦么?那make a wish呢?
- 9如何辨别成语
- 10从前有个秀才,在考卷上乱用”而”字,个个”而”都用得很恰当.请说说每个’而’的用法或含义
热门考点