当前位置: > 设函数f(x)=x+根号(2-x),证明:在(负无穷大,7/4】上f(x)是增函数,并求f(x)的最大值...
题目
设函数f(x)=x+根号(2-x),证明:在(负无穷大,7/4】上f(x)是增函数,并求f(x)的最大值

提问时间:2020-08-01

答案
设函数f(x)=x+√(2-x),证明:在(-∞,7/4]上f(x)是增函数,并求f(x)的最大值
定义域:由2-x≧0,得x≦2
令f′(x)=1-1/[2√(2-x)]=1-[√(2-x)]/[2(2-x)]=[4-2x-√(2-x)]/[2(2-x)]>0,
由于2-x>0,故得4-2x-√(2-x)>0,2(2-x)>√(2-x),两边平方去根号得4(2-x)²>2-x,
(2-x)[4(2-x)-1]=(2-x)(7-4x)=(x-2)(4x-7)=4(x-2)(x-7/4)>0,由于已知x-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.