当前位置: > 求使得函数lim(n趋向于无穷大)(1+x 的2n次方)分之(x的2n-1 次方+a*x的平方+bx)连续的a和b...
题目
求使得函数lim(n趋向于无穷大)(1+x 的2n次方)分之(x的2n-1 次方+a*x的平方+bx)连续的a和b

提问时间:2020-07-31

答案
函数是这样吧 f(x) = lim { x^(2n-1)+a x^2+bx } / { 1+x^(2n) }
函数是分段函数 先分|x| > 1,|x| < 1,x=-1.x=1 四段,分别把极限化解
后得到四段的表达式分别为1/x,a x^2+bx,(a-b-1)/2,(1+a+b)/2
然后利用连续性,左右极限与函数值关系 ,建立方程组
可求得a=0,b=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.