题目
取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图1;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为Bn,得Rt△ABE,如图2;
第三步:沿EB线折叠得折痕EF,如图3;
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
第一步:先把矩形ABCD对折,折痕为MN,如图1;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为Bn,得Rt△ABE,如图2;
第三步:沿EB线折叠得折痕EF,如图3;
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
提问时间:2020-07-31
答案
(1)△AEF是等边三角形.
证明:∵△ABE与△AB′E完全重合,
∴△ABE≌△AB′E,∠BAE=∠1,
由平行线等分线段定理知EB′=B′F,
又∵∠AB′E=90°
∴△AB′E≌△AB′F,
∴AE=AF,∠1=∠2=
∠BAD=30°,
∴△AEF是等边三角形.
(2)不一定.
由上推证可知当矩形的长恰好等于等边△AEF的边AF时,即矩形的宽:长=AB:AF=sin60°=
证明:∵△ABE与△AB′E完全重合,
∴△ABE≌△AB′E,∠BAE=∠1,
由平行线等分线段定理知EB′=B′F,
又∵∠AB′E=90°
∴△AB′E≌△AB′F,
∴AE=AF,∠1=∠2=
1 |
3 |
∴△AEF是等边三角形.
(2)不一定.
由上推证可知当矩形的长恰好等于等边△AEF的边AF时,即矩形的宽:长=AB:AF=sin60°=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|