当前位置: > 说明无论K取何值,方程总有实数根:x平方-(2k+1)x+4(k+1/2)...
题目
说明无论K取何值,方程总有实数根:x平方-(2k+1)x+4(k+1/2)
说明无论K取何值,方程总有实数根:x平方-(2k+1)x+4(k+1/2)=0

提问时间:2020-07-31

答案
因为方程总有实数根,所以判别式小于等于0恒成立,
得(2k+1)^2-16(k+1/2)小于等于0
化简得4k^2-12k-7小于等于0
即k属于【-1/2,7/2】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.