当前位置: > 偶函数f(x)=ax4+b3+cx2+dx+e的图像经过(0,1),且在x=1处的切线方程y=x-2,求f(x)的解析式...
题目
偶函数f(x)=ax4+b3+cx2+dx+e的图像经过(0,1),且在x=1处的切线方程y=x-2,求f(x)的解析式

提问时间:2020-07-31

答案
f(x)图像经过(0,1)
f(x)=ax^4+bx^3+cx2+dx+1
f(x)是偶函数
f(x)=f(-x)
ax^4+bx3+cx2+dx+1=ax^4-bx^3+cx^2-dx+1
2bx3+2dx=0
b=0 d=0
f(x)=ax^4+cx2+1
f`(x)=4ax^3+2cx
f`(1)=4a+2c=1
f(1)=a+c+1
y=x-2 a+c+1=1-2=-1
a+c=-2
a=5/2 c=-9/2
f(x)=5x^4/2-9x^2/2+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.