当前位置: > 设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值....
题目
设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.

提问时间:2020-07-31

答案
∵x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,
∴△=(-4m)2-4×2×(2m2+3m-2)≥0,可得m≤
2
3

又x1+x2=2m,x1x2=
2m2+3m−2
2

∴x12+x22=2( m−
3
4
2
+
7
8
=2(
3
4
−m)
2
+
7
8

∵m≤
2
3

3
4
-m≥
3
4
-
2
3
>0,
∴当m=
2
3
时,x12+x22取得最小值为2×(
3
4
2
3
2
+
7
8
=
8
9
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.