当前位置: > 若实数a、b、c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(a-c)^2+(b-c)^2的最大值是?...
题目
若实数a、b、c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(a-c)^2+(b-c)^2的最大值是?
这道题考住我好久了为什么答案不是18而是27?老师也没讲清,答对了赏金15外加无限膜拜.

提问时间:2020-07-31

答案
(a-b)^2+(a-c)^2+(b-c)^2=18-2(ab+ac+bc)
即求2(ab+ac+bc)最小值
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=9+2(ab+bc+ac)>=0
因为(a+b+c)^2>=0 最小值为0 所以2(ab+bc+ac)最小值为-9
代入可得
18-2(ab+ac+bc)18+9=27
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.