当前位置: > 设A,B是直线3x+4y+2=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是什么...
题目
设A,B是直线3x+4y+2=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是什么

提问时间:2020-07-31

答案
由圆的性质可知弦的垂直平分线必过圆心,且垂直平分线垂直于AB
由圆x2+y2+4y=x^2+(y+2)^2-4=0得:
圆心为(0,-2)
又kAB*k垂=-1,且kAB=-3/4
所以k垂=4/3
则垂线方程:y+2=4/3x
即 :4x-3y-6=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.