当前位置: > 设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题...
题目
设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题

提问时间:2020-07-31

答案
证明:首先有 r(AB) ≤ min(r(A),r(B)) ≤ r(A).
再由B为行满秩,r(B) = n
所以B可经过初等行变换化为 (En,B1).
所以存在可逆矩阵P使 PB = (En,B1),且有 r(AP^(-1))=r(A)
故有 r(AB) = r((AP^(-1))(PB)) = r((AP^(-1))(En,B1))
= r(AP^(-1),AP^(-1)B1)≥r(AP^(-1)) = r(A).
综上有 r(AB) = r(A) #
此题用到分块矩阵的方法以及多个知识点,需耐心领会!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.