题目
已知圆C1:x²+y²+6x=0关于直线L1:y=2x+1对称的圆C.
(1)求圆C的方程.
(2)过点(-1,0)作直线L与圆C交于A、B两点,O是坐标原点.设向量OS=向量OA+向量OB,是否存在这样的直线L,使得四边形OASB的对角线相等?若存在,求出所有满足条件的直线L的方程;若不存在,请说明理由.
第(1)问我已经解出来了,是(x-1)²+(y+2)²=9
(1)求圆C的方程.
(2)过点(-1,0)作直线L与圆C交于A、B两点,O是坐标原点.设向量OS=向量OA+向量OB,是否存在这样的直线L,使得四边形OASB的对角线相等?若存在,求出所有满足条件的直线L的方程;若不存在,请说明理由.
第(1)问我已经解出来了,是(x-1)²+(y+2)²=9
提问时间:2020-07-31
答案
根据向量的几何意义知道四边形OASB是平行四边形,因为对角线相等,∠AOB=∠AOS+∠BOS=∠OAB+∠OBA=∠SBA+∠OBA=∠OBS,所以∠AOB=∠OBS=90°,所以四边形OASB是矩形,也就是说OA⊥OB
直线过点(-1,0),是圆C外的一点,所以直线可设为斜率式y=k(x+1)
OA⊥OB,即是[x(1),y(1)]*[x(2),y(2)]=0
所以x(1)x(2)+y(1)y(2)=0
将y=k(x+1)代入,有(1+k^2)x(1)x(2)+k^2[x(1)+x(2)]+k^2=0
直线L与圆的相交,联立直线L与圆C的方程,化成关于x的方程,(1+k^2)x^2+2(k^2+2k-1)x+(k^2+4k-4)=0
所以x(1)x(2)=(k^2+4k-4)/(1+k^2),x(1)+x(2)= -2(k^2+2k-1)/(1+k^2)
(k^2+4k-4)-2k^2(k^2+2k-1)/(1+k^2)+k^2=0
即是(k^2+2k-2)-k^2(k^2+2k-1)/(1+k^2)=0
(k^2+2k-1)-1-k^2(k^2+2k-1)/(1+k^2)=0
(k^2+2k-1)/(1+k^2)=1
化简后2k-1=1
k=1
所以直线的方程是y=x+1
直线过点(-1,0),是圆C外的一点,所以直线可设为斜率式y=k(x+1)
OA⊥OB,即是[x(1),y(1)]*[x(2),y(2)]=0
所以x(1)x(2)+y(1)y(2)=0
将y=k(x+1)代入,有(1+k^2)x(1)x(2)+k^2[x(1)+x(2)]+k^2=0
直线L与圆的相交,联立直线L与圆C的方程,化成关于x的方程,(1+k^2)x^2+2(k^2+2k-1)x+(k^2+4k-4)=0
所以x(1)x(2)=(k^2+4k-4)/(1+k^2),x(1)+x(2)= -2(k^2+2k-1)/(1+k^2)
(k^2+4k-4)-2k^2(k^2+2k-1)/(1+k^2)+k^2=0
即是(k^2+2k-2)-k^2(k^2+2k-1)/(1+k^2)=0
(k^2+2k-1)-1-k^2(k^2+2k-1)/(1+k^2)=0
(k^2+2k-1)/(1+k^2)=1
化简后2k-1=1
k=1
所以直线的方程是y=x+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1数学的特殊位置关系
- 2已知数列{an}中 an=2-1/an-1(n-1为脚标) (1)若a1=3/5 数列{bn}满足bn=1/an-1(只是n是脚标) 求{an}的通项公式 (2)若1<a1
- 31立方米空气在常压下温度每升高10摄氏度需要多少热量?多少电能?
- 4“人间四月芳菲尽,山寺桃花始盛开”的原因是什么?
- 5excel表格求和公式算出来的结果不对怎么回事?
- 6用适当的介词填空 we have nice T-shirts_____only 20 dollars.
- 7有the only,the very或者不定代词修饰先行词的定语从句中,后面只用that或者只用who是否要看先行词是否为人或物呢?
- 8Life is so be compelled helpless!是什么意思?
- 9根号7分之1加上根号63减去根号112的过程
- 10riddles的解释
热门考点
- 1围魏救赵是中国古代历史上的一个经典战役,请问是由谁指挥的?
- 2用gain,get,win,earn填空
- 3Besides the to others,there was still ___ third one who said he was ___ second to reach the top
- 4关于缝有哪些读音并组词?
- 5王大伯要栽9行蔬菜,其中有相邻的两行栽茄子,其它行栽西红柿,一共有多少种不同的栽法?
- 6数学广角抽屉原理的练习
- 7六分之七X减二分之一X等于三分之二 怎么解这个方程
- 8若(sinα加cosα)除以(2sinα减cosα)等于2,则求tanα的值
- 9若a的平方-4a b的平方-10b 29=0,则a=?,b=?
- 10∠BAC=30°,∠BAC的平分线上有一点P,PM平行AB,PD垂直AB,PM=6,则AD