当前位置: > 设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,则数列{an}的通项公式为_....
题目
设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,则数列{an}的通项公式为______.

提问时间:2020-07-30

答案
a2-a1=4-6=-2
a3-a2=3-4=-1
∴d=(a3-a2)-(a2-a1)=-1-(-2)=1
∵数列{an+1-an}(n∈N*)是等差数列
∴数列{an+1-an}的首项为-2,公差为1的等差数列
则an+1-an=n-3,则a2-a1=4-6=-2,a3-a2=3-4=-1,…an-an-1=n-4
相加得an=6+(-2)+(-1)+…+(n-4)=
n2−7n+18
2

故答案为:an=
n2−7n+18
2
(n∈N*
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.