题目
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x)是回旋函数,且阶数为a.
(Ⅰ)试判断函数f(x)=x2是否是一个回旋函数;
(Ⅱ)已知f(x)=sinωx是回旋函数,求实数ω的值;
(Ⅲ)若对任意一个阶数为a的回旋函数f(x),方程f(x)=0均有实数根,求a的取值范围.
(Ⅰ)试判断函数f(x)=x2是否是一个回旋函数;
(Ⅱ)已知f(x)=sinωx是回旋函数,求实数ω的值;
(Ⅲ)若对任意一个阶数为a的回旋函数f(x),方程f(x)=0均有实数根,求a的取值范围.
提问时间:2020-07-30
答案
(Ⅰ)若(x+a)2+ax2=0对任意实数都成立,令x=0,则必须有a=0
令x=1,则有a2+3a+1=0,显然a=0不是这个方程的解故假设不成立,该函数不是回旋函数.
(Ⅱ)由于f(x)=sinwx是回旋函数,故有:sinw(x+a)+asinwx=0对任意实数x成立
令x=0,可得sinwa=0,令x=
,可得coswa=-a,故a=±1,w=kπ(k为整数)
(Ⅲ)如果a=0,显然f(x)=0,则显然有实根.
下面考虑a≠0的情况.
若存在实根x0,则f(x0+a)+af(x0)=0,即f(x0+a)=0说明实根如果存在,那么加a也是实根.因此在区间(0,a)上必有一个实根.则:f(0)f(a)<0
由于f(0+a)+af(0)=0,则f(0)=
,只要a>0,即可保证f(0)和f(a)异号.
综上a≥0
令x=1,则有a2+3a+1=0,显然a=0不是这个方程的解故假设不成立,该函数不是回旋函数.
(Ⅱ)由于f(x)=sinwx是回旋函数,故有:sinw(x+a)+asinwx=0对任意实数x成立
令x=0,可得sinwa=0,令x=
π |
2 |
(Ⅲ)如果a=0,显然f(x)=0,则显然有实根.
下面考虑a≠0的情况.
若存在实根x0,则f(x0+a)+af(x0)=0,即f(x0+a)=0说明实根如果存在,那么加a也是实根.因此在区间(0,a)上必有一个实根.则:f(0)f(a)<0
由于f(0+a)+af(0)=0,则f(0)=
−f(a) |
a |
综上a≥0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1____ he have a stomach ache?A.Is B.A
- 2绝对中误差与相对中误差的区别?
- 3把16根火柴首尾相接,围成一个等腰三角形,你能围出等腰三角形吗?若能围成等腰三角形,那你再试试看,最多围成多少种不同的等腰三角形?
- 4Can you tell me__?who the woman is 为什么对?whom that woman is 为什么不对?
- 5某地海拔为78米,如以此地为准,得a地为161米,b地为-16米,c地为-28米,求3地的高度
- 6I would____stay at home and read a good book_____go to a party.A.too;to B.rather:than C.more;than
- 7炼钢厂二月份用煤450比一月份节约十分之一 一月份用煤多少吨 怎样画图
- 8已知x、y是互不相等的自然数,当1/18=1/x+1/y时,x+y的最小值是_.
- 9今天表演节目,共六个节目,下午4:20开始.老师的节目是第4个,如果每个节目要用15分钟,老师的节目是几时几分上场的?)
- 10一个圆锥形的模具,底面周长是12.57cm,高是2.4cm这个模具的体积多少?