当前位置: > 求由圆r=3cosθ与心形线r=1+cosθ所围成图形的面积 请附图说明...
题目
求由圆r=3cosθ与心形线r=1+cosθ所围成图形的面积 请附图说明

提问时间:2020-07-28

答案
联立两个方程
r=3cosθ
r=1+cosθ
当两个相等时,3cosθ=1+cosθ
即2cosθ=1,θ=π/3和-π/3
先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍
S1=∫[0,π/3](1+cosθ)^2dθ=∫[0,π/3](1+2cosθ+cosθ^2)dθ=π/2+9根号3/8
对于剩下的部分就是圆r=3cosθ,从π/3积分到π/2,仍然上下对称
S2=9∫[π/3,π/2](cosθ)^2dθ=3π/4-9根号3/8
总面积S=S1+S2=3π/4-9根号3/8+π/2+9根号3/8=5π/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.