当前位置: > 设二维随机变量(X,Y)的概率密度为f(x,y)={e^[-(x+y)],x.>0,y>0;0其他},则当y>0时,(X,Y)关于Y的边缘概率密度...
题目
设二维随机变量(X,Y)的概率密度为f(x,y)={e^[-(x+y)],x.>0,y>0;0其他},则当y>0时,(X,Y)关于Y的边缘概率密度
答案的过程如何求解?

提问时间:2020-07-28

答案
根据y边缘密度函数
fY(y)=∫0+∞(就是0到正无穷的积分 下面一样)(乘以)f(x,y)dx

当y>0时 有
f(y)=∫0+∞e^[-(x+y)]dx= e^[-y]∫0+∞e^[-x]dx= e^[-y](-e^[-x]∣0+∞)= e^[-y](0+1)= e^[-y]
当y<=0时 f(y)=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.