当前位置: > 设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求实数m的取值范围....
题目
设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求实数m的取值范围.

提问时间:2020-07-28

答案
不等式f(m-1)+f(2m-1)>0即f(m-1)>-f(2m-1),
∵f(-x)=-f(x),可得-f(2m-1)=f(-2m+1)
∴原不等式转化为f(m-1)>f(-2m+1)
又∵f(x)是定义在(-2,2)上的减函数,
∴-2<m-1<-2m+1<2,解之得-
1
2
<m<
2
3

即实数m的取值范围为(-
1
2
2
3
).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.