当前位置: > △ABC的三个内角A、B、C的对边分别是a,b,c,且tanA+tanB=3tanAtanB−3,c=7/2,又△ABC的面积为S△ABC=332.求: (1)角C的大小; (2)a+b的值....
题目
△ABC的三个内角A、B、C的对边分别是a,b,c,且tanA+tanB=
3
tanAtanB−
3
c=
7
2
,又△ABC的面积为S△ABC
3
3
2
.求:
(1)角C的大小;
(2)a+b的值.

提问时间:2020-07-28

答案
(1)tan(A+B)=
tanA+tanB
1−tanAtanB
=−
3
,…(3分)
tanC=−tan(A+B)=
3
,…(5分)
则角C为60°;…(6分)
(2)S△ABC
1
2
absinC
,…(7分)
则ab=6…(8分)
cosC=
a2+b2c2
2ab
…(9分)
a2+b2
73
4

即(a+b)2=a2+b2+2ab=
73
4
+12=
121
4

则a+b=
11
2
…(10分)
(1)利用两角和与差的正切函数公式化简tan(A+B),把已知的等式代入求出tan(A+B)的值,再根据内角和定理及诱导公式得到tanC=tan(A+B),进而得出tanC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)由(1)求出的C的度数,得到sinC的值,然后由三角形的面积公式表示出三角形ABC的面积,根据已知的面积及sinC的值,求出ab的值,接着利用余弦定理表示出cosC,把cosC,c及ab的值代入,求出a2+b2的值,最后利用完全平方公式表示出(a+b)2=a2+b2+2ab,把求出的ab及a2+b2的值代入,开方可得a+b的值.

解三角形.

此题属于解三角形的题型,涉及的知识有:两角和与差的正切函数公式,诱导公式,三角形的面积公式,余弦定理,以及完全平方公式的运用,熟练掌握公式及定理是解本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.