题目
求救:一道用面积求概率的数学题(英文的)
Two circles of radius 1 are to be constructed as follows.The center of circle A is chosen uniformly and at random from the line segment joining(0,0) and(2,0) .The center of circle B is chosen uniformly and at random,and independently of the first choice,from the line segment joining(0,1) to(2,1) .What is the probability that circles A and B intersect?
Circles centered at A and B will overlap if A and B are closer to each other than if the circles were tangent.The circles are tangent when the distance between their centers is equal to the sum of their radii.Thus,the distance from A to B will be2 .Since and A areB separated by 1 vertically,they must be separated by 根号3 horizontally.Thus,if A与B距离小于根号3 the circles intersect.
Now,plot the two random variables AX and BX on the coordinate plane.Each variable ranges from 0 to2 .The circles intersect if the variables are within 根3 of each other.Thus,the area in which the circles don't intersect is equal to the total area of two small triangles on opposite corners,each of area (2 减根号3)的平方除以2.We conclude the probability the circles intersect is:
(4倍根号3 减3)/4
貌似是用一个正方形剪掉角上的两个三角形剩下的面积再比总的面积求出的概率,
没学过微积分。
Two circles of radius 1 are to be constructed as follows.The center of circle A is chosen uniformly and at random from the line segment joining(0,0) and(2,0) .The center of circle B is chosen uniformly and at random,and independently of the first choice,from the line segment joining(0,1) to(2,1) .What is the probability that circles A and B intersect?
Circles centered at A and B will overlap if A and B are closer to each other than if the circles were tangent.The circles are tangent when the distance between their centers is equal to the sum of their radii.Thus,the distance from A to B will be2 .Since and A areB separated by 1 vertically,they must be separated by 根号3 horizontally.Thus,if A与B距离小于根号3 the circles intersect.
Now,plot the two random variables AX and BX on the coordinate plane.Each variable ranges from 0 to2 .The circles intersect if the variables are within 根3 of each other.Thus,the area in which the circles don't intersect is equal to the total area of two small triangles on opposite corners,each of area (2 减根号3)的平方除以2.We conclude the probability the circles intersect is:
(4倍根号3 减3)/4
貌似是用一个正方形剪掉角上的两个三角形剩下的面积再比总的面积求出的概率,
没学过微积分。
提问时间:2020-07-27
答案
题目想必你看懂了 ,就不再翻译
当两圆外切的时候,AB=2
A,B两点的水平距离=√3
所以两圆相交的概率即A,B两点的水平距离小于√3的概率
令A,B的横坐标分别为x,y,都在[0,2]上任意变化,所以在坐标平面上表现为一个边长为2的正方形,总面积看做概率1
|x-y|
当两圆外切的时候,AB=2
A,B两点的水平距离=√3
所以两圆相交的概率即A,B两点的水平距离小于√3的概率
令A,B的横坐标分别为x,y,都在[0,2]上任意变化,所以在坐标平面上表现为一个边长为2的正方形,总面积看做概率1
|x-y|
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1乃流王于彘 是指什么事件?
- 2如何统计某行出现奇数和偶数的次数
- 3如图,从斜边长为a的等腰直角三角形板中间挖去一个直径为b的小圆孔,试用a,b表示阴影部分的面积.
- 4h how often does he exercise?how often do he exercise?
- 5蒙娜袜业长生产一批袜子,实际上半月完成计划的60%,下半月完成计划的55%,实际完成了计划的百分之几?超额完成了计划的百分之几?
- 6在于1024角终边相同的角中,绝对值最小的角是什么
- 7You are e___(提供,给予)a warm welcome to our hotel
- 8《艰难的国运和雄健的国民》的阅读
- 9假设地球没有了人类
- 10某小组同学在协助老师整理化学试剂时,发现一瓶标签残缺的无色液体,如图.他们对无色液体是什么产生了兴
热门考点
- 1在一次校园美化活动,老师派32人除草,20人种树,后来人手不够,派了20支援,使除草人数是是种树2倍,除草
- 2体积相同的铁块和铝块放入水中都沉入水底,它们受到的浮力一样大吗?为什么?++++
- 3一副扑克牌,取出两张王牌. (1)一次至少要拿多少张,才能保证至少有2张是同颜色的? (2)一次至少要拿多少张,才能保证四种花色都有?
- 4小明看一本故事书,第一天看了20页,第二天看了余下的五分之二,这时,未看的与已看的页数相等,这本书
- 5你选择了我,我也选择了你英语怎么说
- 6由于太阳直射点的南北移动,夏季时正午太阳高度要比冬季_______,白昼比冬季______.
- 7一个扇形OAB的面积是1cm²,它的周长是4cm,求圆心角的弧度数和弦长AB.
- 81.夹克衫用英语怎么说?__is“jia ke shan"__English?2.The quilt is (red).对括号部分提问)
- 9张强和赵红都喜欢集邮.你知道他们分别有多少张邮票吗?
- 10西汉对外交往有哪些重要类型?张骞通西域有哪些历史意义?对比张骞和班超出使西域的异同