当前位置: > 若n为正整数,试说明52×32n+1×2n-62×3n×6n能被13整除...
题目
若n为正整数,试说明52×32n+1×2n-62×3n×6n能被13整除

提问时间:2020-07-27

答案
题目的指数没标号,应该是
若n为正整数,试说明5^2×3^(2n+1)×2^n-6^2×3^n×6^n能被13整除
5^2×3^(2n+1)×2^n-6^2×3^n×6^n
= 25*3*3^2N*2^N - 36*3^N*6^N
= 75*9^N*2^N - 36*3^N*6^N
= 75*18^N - 36^18N
= 39*18^N
= 13*3*18^N 能被13整除
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.