当前位置: > 是否存在正整数n,是1/(根号3n+2)是有理数...
题目
是否存在正整数n,是1/(根号3n+2)是有理数
若是,给出n的一个值,若不是,说明理由
可以说根号3n+2=a
3n+2=a^2
n=(a^2-2)/3
然后再怎么说?

提问时间:2020-07-27

答案
不存在这样的数.
任意正整数被3除的余数仅有3种情况:余0、1、2
则对应的该正整数的平方,被3除的余数为:余0、1、1
而3N + 2被3除余2,与上述平方数被3除余数为0或1矛盾.
因此 3N + 2 必不是完全平方数,则1/根号(3n+2)必不是有理数.
也就是说,对所有正整数N,1/根号(3n+2)不是有理数.
看到你的补充内容了.
n=(a^2-2)/3
a^2|3 = 0或1 【a^2被3整除余0或1】
a^2-2 = 1或2 【a^2-2被3整除余1或2】
因此N不属于整数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.