题目
已知函数f(x)=4*x的立方-3m*x的平方+(3/16)m(m≥0)
(1)若函数f(x)的极小值为g(m),求集合M={m|g(m)≥0};
(2)对于(1)中集合M,任取m∈M,函数f(x)在区间(a,a+1)都是增函数,求a的取值范围.
那个不对啊。我用穿针引线算出来m≥根号3/2或-根号3/2≤m≤0
(1)若函数f(x)的极小值为g(m),求集合M={m|g(m)≥0};
(2)对于(1)中集合M,任取m∈M,函数f(x)在区间(a,a+1)都是增函数,求a的取值范围.
那个不对啊。我用穿针引线算出来m≥根号3/2或-根号3/2≤m≤0
提问时间:2020-07-27
答案
(1)以题意得:f‘(x)=12x-6mx;令f‘(x)=0,则x=0或m/2,∵m≥0,∴m/2≥0,∴f(x)在x=m/2时取得极小值即g(m)=f(m/2)=-m/4+3m/16,g‘(m)=-3m/4+3/16,∵在(-1/2,1/2)为增,(-∞,-1/2),(1/2,+∞)为减,∴g(m)≥0的解集...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1在一定温度压强下,10体积A2和30体积B2(都是气体)化合生成C,C化学式是?
- 2做一个长80厘米,高0.6米的玻璃鱼缸,需要几平方厘米的玻璃?
- 3已知对于任意实数x,kx^2-2x+k恒为正数,求实数k的取值范围?
- 4在100张奖券中,有3张中奖,从中任抽2张,这2张都是中奖券的概率是
- 5四年级下册《蝙蝠和雷达》中的判断题“超声波像波浪一样向前推进,传到蝙蝠的耳朵里,蝙蝠就会改变飞行的方向.”这句话对吗?
- 6having lunch和eating lunch有什么不同?
- 7文字题:1、18个2/3的和,减去7除11的商,差是多少?2、3/2的倒数与一个数的20%的和是1,求这个数
- 8爸爸请听我说的作文怎么写
- 9英语翻译
- 10在梯形ABCD中,AD∥BC,AC⊥BD,若AD=2,BC=8,BD=6,求:(1)对角线AC的长;(2)梯形ABCD的面积.