当前位置: > 三角函数加减法公式...
题目
三角函数加减法公式

提问时间:2020-07-27

答案
常用的诱导公式有以下几组:
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)=sinα
  cos(2kπ+α)=cosα
  tan(2kπ+α)=tanα
  cot(2kπ+α)=cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:
  π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  诱导公式记忆口诀
  ※规律总结※
  上面这些诱导公式可以概括为:
  对于k•π/2±α(k∈Z)的个三角函数值,
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
  (奇变偶不变)
  然后在前面加上把α看成锐角时原函数值的符号.
  (符号看象限)
  例如:
  sin(2π-α)=sin(4•π/2-α),k=4为偶数,所以取sinα.
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.
  所以sin(2π-α)=-sinα
  上述的记忆口诀是:
  奇变偶不变,符号看象限.
  公式右边的符号为把α视为锐角时,角k•360°+α(k∈Z),-α、180°±α,360°-α
  所在象限的原三角函数值的符号可记忆
  水平诱导名不变;符号看象限.
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
  这十二字口诀的意思就是说:
  第一象限内任何一个角的四种三角函数值都是“+”;
  第二象限内只有正弦是“+”,其余全部是“-”;
  第三象限内切函数是“+”,弦函数是“-”;
  第四象限内只有余弦是“+”,其余全部是“-”.
  上述记忆口诀,一全正,二正弦,三正切,四余弦
  其他三角函数知识:
同角三角函数基本关系
  ⒈同角三角函数的基本关系式
  倒数关系:
  tanα •cotα=1
  sinα •cscα=1
  cosα •secα=1
  商的关系:
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+cot^2(α)=csc^2(α)
  同角三角函数关系六角形记忆法
六角形记忆法:

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型.
  (1)倒数关系:对角线上两个函数互为倒数;
  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积.
  (主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式.
  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方.
  两角和差公式
  ⒉两角和与差的三角函数公式
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ-cosαsinβ
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
tana+tanB
tan(α+β)=——————
   1-tanα •tanβ
  
tanα-tanβ
  tan(α-β)=——————
   1+tanα •tanβ
  倍角公式
  ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
  sin2α=2sinαcosα
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
   2tanα
  tan2α=—————
   1-tan^2(α)
  半角公式
  ⒋半角的正弦、余弦和正切公式(降幂扩角公式)
   1-cosα
  sin^2(α/2)=—————
   2
   1+cosα
  cos^2(α/2)=—————
   2
   1-cosα
  tan^2(α/2)=—————
   1+cosα
  万能公式
  ⒌万能公式
   2tan(α/2)
  sinα=——————
   1+tan^2(α/2)
   1-tan^2(α/2)
  cosα=——————
   1+tan^2(α/2)
   2tan(α/2)
  tanα=——————
   1-tan^2(α/2)
  万能公式推导
  附推导:
  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*,
  (因为cos^2(α)+sin^2(α)=1)
  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
  然后用α/2代替α即可.
  同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.
  三倍角公式
  ⒍三倍角的正弦、余弦和正切公式
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
   3tanα-tan^3(α)
  tan3α=——————
   1-3tan^2(α)
  三倍角公式推导
  附推导:
  tan3α=sin3α/cos3α
  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
  上下同除以cos^3(α),得:
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
  =2sinαcos^2(α)+(1-2sin^2(α))sinα
  =2sinα-2sin^3(α)+sinα-2sin^2(α)
  =3sinα-4sin^3(α)
  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
  =(2cos^2(α)-1)cosα-2cosαsin^2(α)
  =2cos^3(α)-cosα+(2cosα-2cos^3(α))
  =4cos^3(α)-3cosα
  即
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  三倍角公式联想记忆
  记忆方法:谐音、联想
  正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
  余弦三倍角:4元3角 减 3元(减完之后还有“余”)
  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示.
  和差化积公式
  ⒎三角函数的和差化积公式
   α+β α-β
  sinα+sinβ=2sin—----•cos—---
   2 2
   α+β α-β
  sinα-sinβ=2cos—----•sin—----
   2 2
   α+β α-β
  cosα+cosβ=2cos—-----•cos—-----
   2 2
   α+β α-β
  cosα-cosβ=-2sin—-----•sin—-----
   2 2
  积化和差公式
  ⒏三角函数的积化和差公式
  sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
  cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
  cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
  sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
  和差化积公式推导
  附推导:
  首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
  所以,sina*cosb=(sin(a+b)+sin(a-b))/2
  同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
  同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
  所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
  同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
  这样,我们就得到了积化和差的四个公式:
  sina*cosb=(sin(a+b)+sin(a-b))/2
  cosa*sinb=(sin(a+b)-sin(a-b))/2
  cosa*cosb=(cos(a+b)+cos(a-b))/2
  sina*sinb=-(cos(a+b)-cos(a-b))/2
  好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
  把a,b分别用x,y表示就可以得到和差化积的四个公式:
  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.