题目
设m∈R,在平面直角坐标系中,已知向量a(mx,y+1)b(x,y-1).a⊥b,m等于
设m∈R,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.若m等于四分之一,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A、B,且OA⊥OB(o为原点坐标),并求出该圆的方程.
设m∈R,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.若m等于四分之一,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A、B,且OA⊥OB(o为原点坐标),并求出该圆的方程.
提问时间:2020-07-27
答案
(Ⅱ)当m=1/4时
,轨迹E的方程为x²/4+y²=1,
设圆的方程为x²+y²=r²(0<r<1),当
切线斜率存在时,可设圆的任一切线方程为y=kx+t,
A(x1,y1),B(x2,y2),
所以|t|/根号(1+k²)=r,
即t²=r²(1+k²).①
因为OA⊥OB,
所以x1x2+y1y1=0,
即x1x2+(kx1+t)(kx2+t)=0,
整理得(1+k²)x1x2+kt(x1+x2)+t2=0.②
由方程组x²/4+y²=1和y=kx+t
消去y得
(1+4k²)x+²8ktx+4t²-4=0.③
由韦达定理x1+x2=-8kt/1+4k²
x1•x2=4t²-4/1+4k²
代入②式并整理得
即5t²=4+4k²
结合①式有5r²=4,
r=2根号5/5∈(0,1),
当切线斜率不存在时,x²+y²=4/5也满足题意,
故所求圆的方程为x²+y²=4/5
,轨迹E的方程为x²/4+y²=1,
设圆的方程为x²+y²=r²(0<r<1),当
切线斜率存在时,可设圆的任一切线方程为y=kx+t,
A(x1,y1),B(x2,y2),
所以|t|/根号(1+k²)=r,
即t²=r²(1+k²).①
因为OA⊥OB,
所以x1x2+y1y1=0,
即x1x2+(kx1+t)(kx2+t)=0,
整理得(1+k²)x1x2+kt(x1+x2)+t2=0.②
由方程组x²/4+y²=1和y=kx+t
消去y得
(1+4k²)x+²8ktx+4t²-4=0.③
由韦达定理x1+x2=-8kt/1+4k²
x1•x2=4t²-4/1+4k²
代入②式并整理得
即5t²=4+4k²
结合①式有5r²=4,
r=2根号5/5∈(0,1),
当切线斜率不存在时,x²+y²=4/5也满足题意,
故所求圆的方程为x²+y²=4/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1蜥蜴、烘烤 发现下面词语的规律.照样写词
- 2只要提供氧气,线粒体就能为叶绿体提供co2和ATP错在哪里
- 3二元函数的梯度表示的是什么几何意义?
- 4已知某一次函数的图像交y轴于点(0,2),且图像与坐标轴所围成的三角形面积为4,则满足条件的函数表达式
- 5已知函数f(x)=log2(2-3x)+3
- 6什么是匀角加速圆周运动
- 7天津市奥林匹克中心体育场“水滴”位于天津市西南部的奥林匹克中心内,某校八年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽
- 8向2L密闭容器里充入2mol M和一定量的N,发生如下反应:M(g)+N(g)=E(g).当反应进行到4min时,测得M
- 90.5无氧铜网线100米的电阻是多少
- 10设计实验,验证是白色物体还是黑色物体吸热能力强
热门考点