题目
已知锐角三角形ABC中的内角A,B,C 的对边为a,b,c,定义向量m=
提问时间:2020-07-27
答案
由 m∥ n得2sinB,[(2cos²B/2)-1]=(-根号3)cos2B
即2sinBcosB=- 根号3cos2B.即tan2B=-根号3 .
又∵B为锐角,∴2B∈(0,π).
∴ B=π/3
∵f(x)=sin2xcosB-cos2xsinB=sin(2x-π/3)
单增区间是[-π/12+kπ,5π/12+kπ](k是整数)
(2由余弦定理 b²=a²+c²-2accosB,得a²+c²-ac-12=0.
又∵a²+c²≥2ac,代入上式得ac≤12(当且仅当a=c=2时等号成立).
∴△ABC面积的最大值为12 .△ABCD的面积的范围是(0,12]
即2sinBcosB=- 根号3cos2B.即tan2B=-根号3 .
又∵B为锐角,∴2B∈(0,π).
∴ B=π/3
∵f(x)=sin2xcosB-cos2xsinB=sin(2x-π/3)
单增区间是[-π/12+kπ,5π/12+kπ](k是整数)
(2由余弦定理 b²=a²+c²-2accosB,得a²+c²-ac-12=0.
又∵a²+c²≥2ac,代入上式得ac≤12(当且仅当a=c=2时等号成立).
∴△ABC面积的最大值为12 .△ABCD的面积的范围是(0,12]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点