题目
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
使得2f(&)+&f'(&)=0
使得2f(&)+&f'(&)=0
提问时间:2020-07-27
答案
令 g(x)=x²f(x)
则g(0)=g(1)=0
由中值定理:存在&∈(0,1),使 g'(&) = 2&f(&)+&²f'(&)=0
即2f(&)+&f'(&)=0
则g(0)=g(1)=0
由中值定理:存在&∈(0,1),使 g'(&) = 2&f(&)+&²f'(&)=0
即2f(&)+&f'(&)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点